150 research outputs found

    Breast Ultrasound Past, Present, and Future

    Get PDF
    This chapter will review the utilization of breast ultrasound for screening and diagnostic purposes. Currently, ultrasound is primarily used to investigate palpable lesions in women less than 30 years old, to provide further characterization of abnormal mammographic findings, and to guide invasive breast interventions. Innovations in ultrasound technology have improved the detection and diagnosis of breast cancer. Computer-aided detection (CAD), elastography, quantitative breast ultrasound technology, and ultrasound contrast agents (microbubbles) were developed to improve diagnostic accuracy. These advancements have the potential to impact overall survival by detecting cancers that are smaller and less aggressive

    The ability of magnetic field sensors to monitor feeding in three domestic herbivores

    Get PDF
    The rate at which animals ingest food is a fundamental part of animal ecology although it is rarely quantified, with recently-developed animal-attached tags providing a potentially viable approach. However, to date, these methods lack clarity in differentiating various eating behaviours, such as ‘chewing’ from ‘biting’. The aims of this study were to examine the use of inter-mandibular angle sensors (IMASENs), to quantify grazing behaviour in herbivores including cattle (Bos taurus), sheep (Ovis aries) and pygmy goats (Capra aegagrus hircus) eating different foodstuffs. Specifically, we aimed to: (1) quantify jaw movements of each species and determine differences between biting and chewing; (2) assess whether different food types can be discerned from jaw movements; and (3) determine whether species-specific differences in jaw movements can be detected. Subjects were filmed while consuming concentrate, hay, grass and browse to allow comparison of observed and IMASEN-recorded jaw movements. This study shows that IMASENs can accurately detect jaw movements of feeding herbivores, and, based on the rate of jaw movements, can classify biting (taking new material into the mouth) from chewing (masticating material already in the mouth). The biting behaviours associated with concentrate pellets could be identified easily as these occurred at the fastest rate for all species. However, the rates of chewing different food items were more difficult to discern from one another. Comparison of chew:bite ratios of the various food types eaten by each species showed no differences. Species differences could be identified using bite and chew rates. Cattle consistently displayed slower bite and chew rates to sheep and pygmy goats when feeding, while sheep and pygmy goats showed similar bite and chew rates when feeding on concentrate pellets. Species-specific differences in chew:bite ratios were not identified. Magnetometry has the potential to record quantitative aspects of foraging such as the feeding duration, food handling time and food type. This is of major importance for researchers interested in both captive (e.g., agricultural productivity) and wild animal foraging dynamics as it can provide quantitative data with minimal observer interference

    Malaria incidence and efficacy of intermittent preventive treatment in infants (IPTi).

    Get PDF
    BACKGROUND: Intermittent preventive antimalarial treatment in infants (IPTi) is currently evaluated as a malaria control strategy. Among the factors influencing the extent of protection that is provided by IPTi are the transmission intensity, seasonality, drug resistance patterns, and the schedule of IPTi administrations. The aim of this study was to determine how far the protective efficacy of IPTi depends on spatio-temporal variations of the prevailing incidence of malaria. METHODS: One thousand seventy infants were enrolled in a registered controlled trial on the efficacy of IPTi with sulphadoxine-pyrimethamine (SP) in the Ashanti Region, Ghana, West Africa (ClinicalTrial.gov: NCT00206739). Stratification for the village of residence and the month of birth of study participants demonstrated that the malaria incidence was dependent on spatial (range of incidence rates in different villages 0.6-2.0 episodes/year) and temporal (range of incidence rates in children of different birth months 0.8-1.2 episodes/year) factors. The range of spatio-temporal variation allowed ecological analyses of the correlation between malaria incidence rates, anti-Plasmodium falciparum lysate IgG antibody levels and protective efficacies provided by IPTi. RESULTS: Protective efficacy of the first SP administration was positively correlated with malaria incidences in children living in a distinct village or born in a distinct month (R2 0.48, p < 0.04 and R2 0.63, p < 0.003, respectively). Corresponding trends were seen after the second and third study drug administration. Accordingly, IgG levels against parasite lysate increased with malaria incidence. This correlation was stronger in children who received IPTi, indicating an effect modification of the intervention. CONCLUSION: The spatial and temporal variations of malaria incidences in a geographically and meteorologically homogeneous study area exemplify the need for close monitoring of local incidence rates in all types of intervention studies. The increase of the protective efficacy of IPTi with malaria incidences may be relevant for IPTi implementation strategies and, possibly, for other malaria control measures

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    The impact of migration on tuberculosis epidemiology and control in high-income countries: a review.

    Get PDF
    Tuberculosis (TB) causes significant morbidity and mortality in high-income countries with foreign-born individuals bearing a disproportionate burden of the overall TB case burden in these countries. In this review of tuberculosis and migration we discuss the impact of migration on the epidemiology of TB in low burden countries, describe the various screening strategies to address this issue, review the yield and cost-effectiveness of these programs and describe the gaps in knowledge as well as possible future solutions.The reasons for the TB burden in the migrant population are likely to be the reactivation of remotely-acquired latent tuberculosis infection (LTBI) following migration from low/intermediate-income high TB burden settings to high-income, low TB burden countries.TB control in high-income countries has historically focused on the early identification and treatment of active TB with accompanying contact-tracing. In the face of the TB case-load in migrant populations, however, there is ongoing discussion about how best to identify TB in migrant populations. In general, countries have generally focused on two methods: identification of active TB (either at/post-arrival or increasingly pre-arrival in countries of origin) and secondly, conditionally supported by WHO guidance, through identifying LTBI in migrants from high TB burden countries. Although health-economic analyses have shown that TB control in high income settings would benefit from providing targeted LTBI screening and treatment to certain migrants from high TB burden countries, implementation issues and barriers such as sub-optimal treatment completion will need to be addressed to ensure program efficacy
    • …
    corecore